一、前言
雖然靜電效應是電學中最早用實驗證明出來的,但在現(xiàn)代工業(yè)制程中靜電卻還被視為“無名火”。一般業(yè)界對靜電危害防制技術可謂相當陌生,常常發(fā)生許多誤解或誤用防制方法而不自知,以致未能防范靜電危害事故的發(fā)生。
在大部份工業(yè)制程中都會產生靜電荷的累積,輕則使人感到不舒適,重則對人體造成傷害,甚至在易燃性氣體、液體和粉塵的裝卸與輸送過程中,產生火災爆炸事故。尤其在某些具潛在靜電危害的行業(yè),如:化學、石油、涂料、塑料、制藥、食品、印刷和電子等行業(yè),容易有靜電危害產生的問題。
二、靜電危害的產生
靜電危害的產生有一特定的過程,如圖1所示。圖中的架構有助于對靜電放電引燃之危害作系統(tǒng)性的認識。在工作環(huán)境中,所有因靜電引起的火災爆炸事件都遵循著相同的程序,如下所述:首先發(fā)生電荷分離,然后電荷累積,若電荷無法散逸,則將發(fā)生靜電放電,同時可能引燃周圍易燃性物質,而發(fā)生火災爆炸危害事件。
許多工業(yè)制程常使用導電性甚差的物質,并常有表面接觸、分離和移動的操作,因而產生電荷分離的現(xiàn)象。例如:高電阻值液體的流動或過濾、粉體的研磨、混合或篩選過程、粉體的氣動式傳輸、人員或車輛在絕緣地板上的移動、輸送帶或薄片狀物質在滾輪上的移動等。在上述或類似的制程中都會發(fā)生靜電的問題。
當電荷在物體上累積到使電場達空氣的介電強度3mv/m時,就會產生放電現(xiàn)象,將其所儲存的全部或部份能量釋放出來,形成具有光與熱的放電路徑,并可能引燃易爆性物質。根據易燃性物質的最小引火能量 (minimum ignition energy mie) 數據,可推知靜電放電的能量是否足以引燃該易燃性物質。
近來由于許多設備的零件都使用非導電性塑料,使得設備中某部份金屬的組件、組件、管路、容器或結構形成電的絕緣體,致使電荷逐漸累積至危險程度。典型的例子包括:在塑料管路上安裝金屬漏斗、金屬管路上因非導電性墊圈而使某段金屬管路絕緣、人員因穿絕緣鞋或站在絕緣地板上而使人體被絕緣等。累積在絕緣導體上的電荷產生放電時,會將所有的能量在一次放電中釋放,此類靜電放電稱為火花放電。一般而言,火花放電可引燃易燃性氣體、蒸氣和塵云。
電荷在絕緣物體表面的移動速率甚慢,然而靜電放電的持續(xù)時間卻極短,因此絕緣物體蓄積的電荷,不易于單次的靜電放電中全部釋放出來,而可能在絕緣物體表面之鄰近區(qū)域發(fā)生多次靜電放電。由于電荷和周圍環(huán)境幾何形狀之不同,放電型式可分為:電暈放電、刷狀放電,以及射狀放電三種。一般而言,刷狀放電之能量大于電暈放電。刷狀放電能量足以引燃許多易燃性氣體、溶劑蒸氣及混合物等。在一非導電性薄膜的兩面充滿正、負極性電荷時將蓄積大量電荷,若發(fā)生射狀放電其能量足以引燃大多數的可燃性氣體和易燃性粉塵。
在一大筒倉或容器中充滿高電荷粉粒產品的表面發(fā)生之輻射狀方式放電,稱為大量粉堆放電。若有易燃性氣體或具有較低最小引火能量之塵云存在時,則有甚大的潛在危害,因此必須設法排除大量粉堆放電的產生。
三、靜電危害防制方法
靜電危害防制方法可分為接地、增加濕度、限制速度、抗靜電材料、與靜電消除器等五種。工業(yè)制造過程中,因作業(yè)環(huán)境、程序及材料的不同,所實施的靜電危害防制方法亦會有所不同。選用時必須考量現(xiàn)場制程環(huán)境、條件與限制,甚至經費、管理系統(tǒng)與人力素質等因素。沒有一種靜電危害防制方法可以適用于所有的工業(yè)制程或情況,有時同時采用二種或二種以上的靜電危害防制方法。
(一)、接地
靜電危害防制方法中,接地是最有效且經濟的方法。制程中因摩擦、感應或傳導等方式產生靜電,若電荷蓄積在對地絕緣的金屬設備、導電性產品或人員身體上,則蓄積的電荷會在一次放電中將能量釋放。此類靜電放電為發(fā)生靜電危害事故之主要原因。其防制方法就是將所有具導電性的對象實施接地,并保持低的接地電阻,將蓄積在金屬設備、導電性產品或人員身體上的電荷迅速向大地散逸,以避免發(fā)生靜電危害事故。
根據相關研究顯示,存在易燃性蒸氣的一般作業(yè)場所中,被絕緣的金屬設備/組件、導電性產品或人員身體本身的電位需達100 v以上,方可能因放電而引燃周圍的易燃性物質。因此在工廠中將被絕緣的金屬設備/組件、導電性產品等實施接地,保持接地電阻小于106 ω,就足以將蓄積的電荷迅速向大地散逸,而將本身的靜電電位降至100 v以下,以避免發(fā)生靜電危害事故。